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LETTER TO THE EDITOR 

Finite-size scaling for directed bond percolation with and 
without cycles on a triangular lattice? 

Anna ChameS, S L A de Queiroz and R R dos Santos 
Departamento de Fisica, PUC, 22452 Rio de Janeiro, Brazil 

Received 3 March 1986 

Abstract. We apply finite-size scaling and phenomenological renormalisation group argu- 
ments to the problems of directed acyclic, directed cyclic and undirected bond percolation 
on a triangular lattice. Our results are in good agreement with known estimates, and show 
that the phenomenological renormalisation procedure is sensitive to the difference between 
global and local directional biases, as well as to the distinction between locally directed 
and fully isotropic problems. In addition, we draw tentative comments on the extension, 
to directed problems, of the relation A =  rrv (where A is the inverse correlation length 
amplitude of a strip of finite width at criticality and 17 is the exponent that describes the 
decay of correlations at the critical point), known to hold for various isotropic systems. 

Finite-size scaling theory (Fisher 1971; for a recent review see Barber 1983) has been 
most successful in deriving critical properties of infinite systems from those of their 
finite counterparts. In particular, the conjugation of transfer matrix methods with 
finite-size scaling in the phenomenological renormalisation group (Nightingale 1976) 
has been a powerful tool in obtaining accurate values of critical parameters (tem- 
peratures and exponents) for a number of physical models (Nightingale 1982, Barber 
1983). Although convergence is eventually reached in most cases, it often happens 
that phenomenological renormalisation estimates approach their limiting values faster 
for thermal problems than for geometric ones. This can be seen, e.g., in two dimensions 
if, for strips with a given small width ~5 sites, one compares results obtained for Ising 
(Nightingale 1976) or transverse Ising models (e.g. dos Santos and Sneddon 1981) and 
the corresponding ones, e.g., for percolation and lattice animals (Derrida and Van- 
nimenus 1980, Derrida and De Seze 1982) or self-avoiding walks (Derrida 1981). For 
wider strips errors are usually small and convergence monotonic in either type of 
problem. 

The existence of a directional bias has been successfully accounted for in 
phenomenological renormalisation schemes; see Domany and Kinzel(l981) and Kinzel 
and Yeomans (1981) for directed percolation and Nadal et a1 (1982) for directed 
animals. 

In the present letter we discuss the application of phenomenological renormalisation 
to the problem of directed bond percolation on a triangular lattice; for a review of 
properties and applications of directed percolation, see Kinzel(l983). The distinguish- 
ing feature of this case, as compared, e.g., to directed percolation on a square lattice, 
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is that the directional bias may be global or only of a local nature; this depends 
exclusively on the relative disposition of bond directionalities along the three lattice 
directions. As can be seen from figure 1, if bond directionalities are distributed as in 
figure l ( a )  (acyclically) the overall preferred direction of, e.g., information flow is 
from left to right, whereas with the arrangement of figure l ( b )  (cyclical), directional 
constraints only have a local effect and the system is globally isotropic. Accordingly, 
series studies (Blease 1977a,b,c) indicate that percolation on a triangular lattice with 
cycles belongs to the same universality class as undirected percolation, while the 
acyclical case clearly does not. Our first purpose here is to check the extent to which 
the phenomenological renormalisation method is sensitive to the difference between 
so-called ‘global’ and ‘local’ directional biases. In doing so we expect to contribute 
towards a clearer understanding of the advantages and limitations (if any) of the 
method. Secondly, we make brief comments on the possible extension to directed 
problems of a universality property of critical amplitudes in finite-size scaling, known 
to hold for isotropic systems (see e.g. Privman and Fisher 1984 and references therein). 

( a )  I b l  

Figure 1. Directed bonds on a triangular lattice, arranged so that in ( a )  there is a preferred 
direction (left to right) whereas in ( b )  there is no overall favoured direction. 

Apart from the series work of Blease (1977a,b,c) quoted above, little has been done 
on directed percolation on a triangular lattice. Examples are the exact solution of Wu 
and Stanley (1982) of a particular case where all bonds are present along a given 
direction, and the phenomenological renormalisation study of partially directed site 
percolation of Martin and Vannimenus (1985); the latter authors use their results 
jointly with those for the same problem on a square lattice, with the main purpose of 
discussing corrections to scaling. Perhaps the lack of interest is because no qualitative 
difference is expected from the same problem on a square lattice (which has been 
much more extensively studied), with the exception of the case discussed here, where 
formation of vortices (cycles) destroys global directionality. 

Throughout our work we have used periodic boundary conditions, with which one 
usually obtains sequences of estimates that extrapolate more smoothly than if free 
boundary conditions are imposed (Demda and Vannimenus 1980, Demda 1981). For 
the acyclic problem we have used strips of width N = 2, 3, 4 and 5 (see figure 2), with 
the preferred direction along the strip. As is known from anisotropic scaling (Kinzel 
and Yeomans 1981, Kinzel 1983), since there are three critical parameters (the critical 
probability p c  and the critical exponents vi1 and vI defined by [ll-(pc-p)-y~l and 
t1 - ( p c  - p ) - ” ~ ,  where 511 and e1 are correlation lengths respectively along and perpen- 
dicular to the preferred direction). The most efficient way is to compare three strips 
of successive widths in order to obtain estimates for the unknown quantities contained 
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Figure 2. Strip of width N = 3 sites used in our calculations. Here, bonds are directed 
acyclically. Periodic boundary conditions are used; for clarity, the corresponding bonds 
are not represented. 

in the recursion relation; p* (the critical probability) and 8 (the anisotropy exponent 
= vl, /vl) .  The exponent vi can then be obtained from the appropriate derivatives of 
the perpendicular correlation length tL (which scales linearly with N )  at the fixed 
point (Kinzel and Yeomans 1981). Since it is til that is given by the largest eigenvalue 
of the transfer matrix, we use the relation tL = 61". For the cyclic case, we have used 
only strips of widths 2 and 3; this is because the number of distinct configurations 
which have to be counted for the transfer matrix grows much faster than even in 
undirected percolation (see Derrida and Vannimenus (1980) for an example of configur- 
ations in undirected percolation). The problem here is that one has to distinguish 
whether a site in column N is connected to column 1 (Derrida and Vannimenus 1980) 
by a path of bonds directed either from column N to column 1 or vice versa. Already 
at width N = 3 the transfer matrix is 22 x 22, which makes it quite impractical to push 
the calculations further towards larger N. In analysing data for the cyclic problem, 
we have assumed the existence of a unique, direction-independent, correlation length 
exponent; thus, estimates for p c  and v can be obtained from comparison of a pair of 
strips in the usual way (see e.g. Derrida and Vannimenus 1980). In order to check 
whether this assumption had too strong a bias towards identifying the cyclic problem 
with the fully undirected one, we have calculated p c  and Y for undirected percolation 
on a triangular lattice, using strips of width 2 and 3. Our results are displayed in table 
1,  for all cases studied. The following comments are in order. 

(i)  For the acyclic case, estimates for the critical probability are in better agreement 
with known results than those for exponents; however, the latter do show the correct 
trend with increasing N. A naive two-point extrapolation against 1/ NZ (this variable 
seems to be the best choice for systems with periodic boundary conditions (Barber 
and Fisher 1973)) gives Oext= 1.34 and vlext= 1.13. For the site problem on a square 
lattice, Kinzel and Yeomans (1981) quote 8 = 1.54 and vL = 1.13 before extrapolation, 
from strips with N = 3 ,  4 and 5; this shows that our problem behaves slightly worse 
than usual, as regards the rate of convergence with increasing N (see the remarks in 
the introductory paragraph). 

(ii) Comparison between results for cyclic and undirected cases shows that critical 
probability estimates differ widely (while, for each given case, our estimate is in very 
good agreement with data from other sources); on the other hand, critical exponents 
are rather close to each other and to the accepted value for undirected percolation. 
The picture is doubtless consistent with the same universal behaviour for cyclic and 
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Table 1. Critical parameters calculated by the phenomenological renormalisation group 
for directed acyclic, directed cyclic and undirected bond percolation on a triangular lattice. 

Acyclic N = 2 , 3 , 4  N = 3 , 4 , 5  Other estimates 

P C  0.4608 
e 1.2241 

1.2146 

0.4657 0.479 f 0.003* 
1.2724 1.581 *0.00Ib 
1.1773 1.094* 0.00Ib 

Cyclic N = 2 , 3  Other estimates 

P C  

U 

0.5660 
1.2678 

0.571 f 0.003' 
1.25 f 0.05' 

Undirected N = 2 , 3  Other estimates 

P C  0.3471 2 sin AT = 0.3473 . . .d 

U 1.2644 3 4 e  

a Blease (1977~) .  
Kinzel and Yeomans (1981) (square lattice). 
Blease (1977a). 
Sykes and Essam (1963). 

e den Nijs (1979). 

undirected percolation. On the other hand, from the above extrapolated values of 8 
and vI for the acyclic case, one obtains vil( = 8v,) = 1.51 which is clearly distinct from 
the estimates for both acyclic and undirected percolation. Note that the comparison 
must be between v for the isotropic problem and vll for the directed one, because in 
the latter case it is vll which relates to an actual correlation length (Kinzel 1983). 

(iii) Although, for the small strip widths used here, we cannot claim the usual 
accuracy of -1 part in lo4 exhibited by phenomenological renormalisation groups 
with N b 10, the overall picture shows that the phenomenological renormalisation 
group is properly sensitive to the difference between global and local bias, and also 
to the small nuance between local bias and full isotropy. 

Still with regard to the application of finite-size scaling concepts to the problem 
of directed percolation, we wish to comment briefly on the feasibility of an extension, 
to directed problems, of a recently found relationship between critical exponents and 
finite-size scaling amplitudes. For an undirected system on a two-dimensional strip 
of linear width L, if all parameters such as temperature and symmetry-breaking field 
are set to the critical values of the truly infinite system, the inverse correlation length 
scales with L as e-' = A/ L. The amplitude A has been shown to be related to the 
exponent 7, which describes the decay of spin-spin correlation functions at criticality, 
by 

A = 7r7. (1) 

This is true, e.g., for the case of Anderson localisation (Pichard and Sarma 1981), the 
XY model (Luck 1982), the q-state Potts model with q < 4 (thus including the Ising 
model ( q  =2)  and bond percolation ( q +  1)) (Derrida and De Seze 1982) and the 
Ashkin-Teller model (Alcaraz and Drugowich de Felicio 1984); in particular, Nightin- 
gale and Blote (1983) worked out an extension of (1) for anisotropic (though undirected) 
systems. Privman and Fisher (1984) discussed the general grounds for universality of 
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scaling functions; Cardy (1984) showed how ( 1 )  above could be obtained from 
conformal invariance. 

Although the fact that conformal invariance does not hold for systems with a 
directional bias may be a deterrent to attempts of generalisation of ( 1 )  to directed 
problems, we decided to check our numerical data and see whether a promising picture 
emerged. Since in finite-size scaling for directed systems it is the perpendicular 
correlation length which scales linearly with N, we plotted (J N against 1/N for the 
acyclic problem (following, e.g., Burkhardt and Guim 1985), with tL calculated at the 
best available estimate of p c  (actually as p c  is not known exactly (see table 1)  we made 
plots for different values of p c  within the error bars). Since it is (11 which is obtained 
from the eigenvalue of the transfer matrix, we made use of eL = with 0 = 1.581 
(the central estimate of Kinzel and Yeomans (1981)). Taking into account the fact 
that it is the actual strip width which enters into the finite-size relation (-' = A/L 
(Privman and Fisher 1984) we see that for the triangular lattice an additional factor 
of J3/2 enters (see figure 2) when one tries to extract A from an extrapolation of e / N  
against 1/N ( N  = number of sites). With N = 2-5, the straightest plot (to 3 parts in 
lo4) for different assumed p c  within the error bars was, not surprisingly, for p c  = 0.479, 
the central estimate of Blease (1977~).  From this plot, we obtain an extrapolated value 
of Az0.594 (for p c  in the range 0.479*0.002, A (extrapolated) suffers a fluctuation 
of *0.020). If now we recall that in Cardy's argument the factor of T originated from 
the transformation of the whole plane (because isotropic correlations spread over it 
all) onto a strip of width 21r, we see that since in the present case correlations spread 
only forward owing to directionality, it is only a half-plane which should be mapped 
onto a strip (thus of width T )  in the corresponding transformation for the directed 
problem. If this is true, we must have 

A=' 2'rrvIl (2) 

in the case where qI1 is present because it is the decay of correlations along the strip 
which matters (Nightingale and Blote 1983), and in our case the strip is parallel to 
the preferred direction. 

Although the above arguments are certainly open to challenge, it is interesting to 
compare the value of vll = 0.378 obtained from (2) to that obtained from vll = 2p/ vlI, 
with p = 0.28 * 0.01 and vi1 = 1.732 * 0.001 (Kinzel 1983), namely vll = 0.32 * 0.01. The 
error (15'/0) is the same as if one compares our extrapolated 6(--1.34) with the best 
estimate for that exponent (1.581).  Whether this is purely a numerical coincidence or 
has some deeper meaning, we do not know at present. In our opinion, it would be 
interesting if the existence of a relation between critical exponents and finite-size 
scaling amplitudes for directed problems could be definitely proved (or else disproved 
by positive arguments). An analysis of the problem on the square lattice, where a 
wealth of data are available, would be welcome. 

In summary, we have discussed the application of finite-size scaling and 
phenomenological renormalisation group arguments to the problems of directed acyc- 
lic, directed cyclic and undirected bond percolation on a triangular lattice. We have 
found that our calculational method is sensitive to the differences between the various 
problems, thus showing its reliability under conditions hitherto untested, to our knowl- 
edge. In addition, we have made a few tentative remarks on the feasibility of an 
extension, to directed problems, of a universality property of critical amplitudes in 
finite-size scaling which is known to hold for undirected systems. Although our results 
on this latter point are inconclusive, we hope our preliminary approach will motivate 
researchers to further work on this interesting problem. 
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